Researchersdevelop optical fibre capable of over 1 petabit per second

Boffins claim new fibre can transmit12 times as much data as existing optic fibres.

By

A coupler created by Macquarie University in Australia, combined with afibre fabricated by Hokkaido University and equipment maker Fujikura, and atransmission system developed by the National Institute of Information andCommunications Technology in Japan, has led to transmission speeds in excess of1 petabit.

The new four-core, three-mode fibre was touted as being the same width asexisting standard fibre, but was capable of 12 times the data speed. MacquarieUniversity said the fibre was less prone to damage due to its narrowerdiameter, and could be used with existing equipment.

“The world’s insatiable demand for data means that we are approachinga ‘capacity crunch’ and need to find new ways to transport ever-largervolumes,” said Dr Simon Gross of the Macquarie Photonics Research Centre.

“This technology promises a solution to the bottleneck created byexisting optical fibres. For the first time, we have created a realistic anduseable-sized fibre which is resilient and can transport huge amounts ofdata.”

Uses of the fibre would be in backhaul networks, the university said,although it pointed out that the fibre’s capacity was “12 million timesquicker than the fastest NBN connection”.

In September, NBN announced that it had doubledthe capacity on its fibre-optic transit network to 19.2Tbps per fibre link.

The upgraded capacity kicked off in Sydney between Eastern Creekand Asquith, with the 3,600km route between Darwin and Brisbane to follow inDecember — to support growth on the Sky Muster satellite service — and willthen be switched on progressively across the nation.

“The capacity upgrade has been made possible with the successfulinstallation of new optical transmission technology — from network equipmentmaker Coriant’s CloudWave Optics — that supports per-wavelength transmissionrates of 200 gigabits per second (Gbps) on optical transport backbonenetworks,” NBN explained.

Earlier in the year, Japanese giant NEC teamed up with Google to work out how to use artificialintelligence to boost the spectral efficiency across the FASTER subsea cablesystem to 6 bits per second per hertz for a capacity of more than 26 terabitsper second.