Infinera Redefines Operational Speed

Infinera Redefines Operational Speed and Simplicity for Cable Operatorswith New Fiber-deep Access Solution

SUNNYVALE, Calif., Oct. 22, 2018 (GLOBE NEWSWIRE)– Infinera, provider of Intelligent Transport Networks,announced today the availability of an innovative packet-optical aggregationand transport solution purpose-built to accelerate and simplify the delivery ofhigh-speed, low-latency services in access networks at the lowest total cost ofownership. The new 1.6 terabit High-Density Ethernet Aggregator (HDEA) enablesnetwork operators to cost-efficiently address key operational and servicedeployment challenges in fiber-deep access environments, including DistributedAccess Architectures (DAA) in cable networks and 5G radio access network (RAN)transport infrastructure.

?The rapid pace of migration from 1G to 10Gconnectivity in access networks will create economic and operational challengesfor operators, and nowhere is this more evident than in the move to DAA withincable access networks,? said Heidi Adams, Senior Research Director, IP &Optical Networks, IHS-Markit. ?Space constraints, power efficiency, and cablemanagement are all key concerns when introducing large-scale aggregation intohub-site locations. Infinera?s new HDEA platform tackles these challengeshead-on.?

The Infinera HDEA, part of the Infinera XTM Series,is an access-optimized packet-optical aggregator that seamlessly integratesoptical transport capabilities, Metro Ethernet Forum Carrier Ethernet2.0-compliant Layer 2 Ethernet functionality and open, programmable softwarecontrol, including direct access via OpenFlow. Designed to support 1.6 terabitsof capacity in an ultra-compact 1 rack unit (1RU) chassis, the HDEA solution isoptimized for a range of access network applications, including ultra-highdensity 10G aggregation in DAA networks, 4G/5G mobile backhaul andhigh-capacity business Ethernet.

Key customer benefits include:

  • Lowest total cost of ownership: The HDEA increases 10G density twofold and lowers power consumption by approximately half over comparable solutions, dramatically reducing operational expenses and capital expenses as access networks scale.
  • Simplified mass subscriber connectivity: The HDEA accelerates and simplifies commissioning of high capacity such as 10G services with Infinera?s Auto-Lambda zero-touch provisioning capabilities, while mitigating deployment-impacting fiber management complexities by reducing fibers by a factor of 20 times with a unique sliding-mount design.
  • Assured investment for 4G/5G infrastructure: The HDEA provides the high capacity and superior timing essential for a high-quality 4G and 5G mobile experience as more small cells are deployed.

?When we demonstrate to our customers how the HDEAenables the installation and commissioning of up to 1.6 terabits ofpacket-optical aggregation in 1RU in less than 10 minutes, the lights go on ina big way,? said Glenn Laxdal, Infinera Senior Vice President and GeneralManager, Product Management. ?This innovative new packet-optical accessoffering reinforces our commitment to extending the reach of our networkingsolutions and driving unprecedented value for our customers.?

Infinera product and technology experts will be atthe SCTE?ISBE Cable-Tec Expo? this week in booth 2905. Visit us to learnmore about Infinera?s comprehensive solutions for cable operators. Customerscan contact Infinerato arrange for a demonstration of our industry-leading intelligent transportsolutions at the show, including our newly introduced HDEA solution and thelatest advances in Infinera Auto-Lambda technology.

Researchers develop optical fibre capable of over 1 petabit per second

Researchersdevelop optical fibre capable of over 1 petabit per second

Boffins claim new fibre can transmit12 times as much data as existing optic fibres.

By

A coupler created by Macquarie University in Australia, combined with afibre fabricated by Hokkaido University and equipment maker Fujikura, and atransmission system developed by the National Institute of Information andCommunications Technology in Japan, has led to transmission speeds in excess of1 petabit.

The new four-core, three-mode fibre was touted as being the same width asexisting standard fibre, but was capable of 12 times the data speed. MacquarieUniversity said the fibre was less prone to damage due to its narrowerdiameter, and could be used with existing equipment.

“The world’s insatiable demand for data means that we are approachinga ‘capacity crunch’ and need to find new ways to transport ever-largervolumes,” said Dr Simon Gross of the Macquarie Photonics Research Centre.

“This technology promises a solution to the bottleneck created byexisting optical fibres. For the first time, we have created a realistic anduseable-sized fibre which is resilient and can transport huge amounts ofdata.”

Uses of the fibre would be in backhaul networks, the university said,although it pointed out that the fibre’s capacity was “12 million timesquicker than the fastest NBN connection”.

In September, NBN announced that it had doubledthe capacity on its fibre-optic transit network to 19.2Tbps per fibre link.

The upgraded capacity kicked off in Sydney between Eastern Creekand Asquith, with the 3,600km route between Darwin and Brisbane to follow inDecember — to support growth on the Sky Muster satellite service — and willthen be switched on progressively across the nation.

“The capacity upgrade has been made possible with the successfulinstallation of new optical transmission technology — from network equipmentmaker Coriant’s CloudWave Optics — that supports per-wavelength transmissionrates of 200 gigabits per second (Gbps) on optical transport backbonenetworks,” NBN explained.

Earlier in the year, Japanese giant NEC teamed up with Google to work out how to use artificialintelligence to boost the spectral efficiency across the FASTER subsea cablesystem to 6 bits per second per hertz for a capacity of more than 26 terabitsper second.

A photonics merger trend

Industry News

A Photonics Megamerger

Stewart Wills

On 9 November, the global materialsand opto electronics company II-VI Inc.announced that it planned to acquire the optical-technology and communicationsfirm Finisar, in a cash-and-stocktransaction valued at some US$3.2 billion. The deal, expected to be completedin the middle of calendar 2019, would create what could be the world?s largestpublicly traded company involved principally in photonic technologies, withrevenues amounting to some US$2.5 billion.

In stating the rationale for thegiant merger, II-VI?s president and CEO, Vincent Mattera Jr., ina press release accompanying the announcement, cited the growth potentialof ?disruptive mega trends? driven by laser and materials innovation, in sectorssuch as communications, consumer electronics and the automotive business. AndFinisar?s CEO, Michael Hurlston, argued that the business combination withII-VI would ?enhance our ability to hit market windows that won?t stay open forlong.?

Apple at the core?

The financial press, perhaps notsurprisingly, has focused on the relationship between both firms and AppleInc., and in particular on the latter?s drive to trick out its iPhone X productline with 3-D sensing capabilities driven by vertical-cavity surface-emittinglasers (VCSELs).

Last year, for example, Apple pumpedsome US$390 million into an investment that supported Finisar?s acquisition ofa large semiconductor fab to boost VCSEL production. And II-VI has also beenbuilding its capabilities in VCSELs, not only for their potential in next-gensmartphones but also for their application in the market for autonomous-vehiclelidar.

II-VI and Finisar believe that puttingtogether their technology platforms in GaAs and InP compound semiconductorlaser design and fabrication will enable the combined entity to bring theselaser products to market faster?providing them with a competitive leg up versusother companies such as Lumentum, also a big VCSEL supplier to Apple.

Markets andsynergies

Beyond the VCSEL market, II-VI seesthe potential for the merger to add value through scale, synergies and themarrying of complementary technologies. For example, Finisar, a market leaderin optical-communications components such as transceivers and reconfigurableoptical add-drop multiplexers (ROADMs), would bring a suite of productscurrently lacking at II-VI. That could open up billions of dollars worth of newaddressable communications markets to the latter firm, particularly as 5Gtechnology gains momentum.

In a larger sense, the deal rationalealso stems from a perceived opportunity for ?deep vertical integration? acrossthe combined firms? core technology portfolios, from engineered materialsthrough complex, multi-component solutions. The breadth and integration, thefirms suggest, could open up access to a wide variety of markets. The companyalso hopes to extract around US$150 million in run-rate cost cuts from themerger, through ?procurement savings, internal supply of materials andcomponents, efficient research and development, consolidation of overlappingcosts and sales and marketing efficiencies.?

A photonics mergertrend

The large II-VI deal marks aculmination of sorts in a merger trend in optics and photonics that?s been gatheringsteam since the beginning of the decade. The advisory and consulting firmCeres, for example, identified some1,032 M&A transactions involving photonics in the year 2016 alone, withan aggregate deal value of US$114.6 billion. These included transactions rangingfrom marquee deals such as Coherent?sbillion-dollar acquisition of Rofin-Sinar to a wide variety of smalltuck-in purchases.

More recently, announcements inaddition to the II-VI/Finisar combination highlight the large deal values anddollar amounts sloshing around in the current merger pool. In March 2018, forexample, II-VI/Finisar?s competitor in the VCSEL arena, Lumentum, disclosed itsintention to acquire the optical components and modules company Oclaro forUS$1.8 billion in cash and stock. And, at the end of October 2018, MKSInstruments, a diversified provider of industrial process and productivitytechnologies, reported that it would acquire laser-maker Electro ScientificIndustries for around US$1 billion, with the deal expected to close in the 2019first quarter.

For the II-VI/Finisar deal inparticular, II-VI plans to use a combination of cash on hand and US$2 billionin new debt to pay for the merger. Under the terms of the deal, the companywould pay Finisar stockholders US$15.60 per share in cash plus 0.2218 shares ofII-VI stock per Finisar share for the purchase. That amounts to a combinedvalue of US$26 per share for Finisar?a premium of roughly 38 percent over thelatter?s closing stock price the day before the deal was announced. It wouldalso leave nearly a third of the new combined entity in the hands of Finisarinvestors.

Rocky start on WallStreet

Notwithstanding the long-termrationale articulated by the companies, the immediate response of theinvestment community to the deal was less than positive. A number ofcommentators focused on the premium that II-VI would pay for Finisar, whichlooked a bit steep to some eyes, and on the significant leverage that II-VIwould have to take on to fund the deal. Further, the acquisition still needs topass antitrust and regulatory muster in the United States, China and othercountries?not an inconsiderable factor, given that the Lumentum?Oclaro deal,announced in March, is still waiting for the nod from Chinese regulators.

As a result, in the immediateaftermath of the announcement, while Finisar shares popped up smartly in priceto reflect the potential gains from the deal premium, II-VI stock sagged nearly20 percent in value on the day of the merger announcement. And the stock fellanother 15 percent on the following Monday, as II-VI was hit with negativefallout from the news that Apple Inc. was reducing shipments of semiconductorlasers from another VCSEL supplier, Lumentum, presumably owing to weakenedsales expectations for Apple?s iPhone X products.

Clearly, it will take a while for thenear-term stock price impacts and regulatory uncertainties to sort themselvesout. One analyst, though, stressed the strong track record and positive resultsthat II-VI has posted in recent quarters?and suggested that, in the rush tosell off II-VI shares, investors ?maybe throwing out the baby with the bathwater.?

New photonic devices are said to be poised to enable the next leap in deep space exploration

New photonic devices are said to be poised to enable the next leap in deep space exploration

Optical Society of America

New directed energy propulsion systems may enable the first interstellar missions,with small, robotic spacecraft exploring neighboring solar systems, accordingto experimental cosmologist Philip Lubin. He will present these and other advances at The Optical Society’s (OSA) Laser Congress, Light the Future Speaker Series, 4-8 Nov. in Boston.

Imagine a wafer-thin spacecraft powered by laser light capable of speeds greater than one quarter the speed of light?fast enough to reach the closest neighboring star to our solar system within 20 years, or something closer to home, like getting people to Mars in a month. By tapping into photonics-driven propulsion, researchers are well on their way to making this seemingly impossible science-fiction achievement a reality, said Lubin,who is a professor of physics at the University of California, Santa Barbara.

The research results Lubin will describe stem from NASA’s Starlight and Breakthrough Starshot programs, both of which support advanced research in photonics. Lubin is director of the Starlight program.

“Photonics,the production and manipulation of light, is already a part of our daily lives?from cellphones to computers to light-emitting-diode (LED) light bulbs to fiber optics that carry your data all over the place?even though you may not see it,” said Lubin. “You can point to practical examples of photonics in everyday life and it appears to have nothing to do with interstellar flight, but in fact it does, because it’s synergistic with the technology you need to achieve interstellar flight.”

One of the greatest challenges in validating this photonics concept as it relates to propulsion is the demonstration of the laser power required to accelerate the proposed/hypothetical spacecraft, according to Lubin.

Synthesized optics for directed energy propulsion systems

Large directed energy systems are not built using a single gigantic laser, but instead rely on beam combining, which involves the use of many very modest power laser amplifiers.

“Our system leverages an established typology called ‘Master Oscillator Power Amplifier’ design,” said Lubin. “It’s a distributed system so each laser amplifier “building block” is between 10 and 1000 Watts. You can hold it in your hand. Instead of building a gigantic laser, you combine a lot of small little laser amplifiers that, when combined, form an extremely powerful and revolutionary system.”

Lubin suggests an analogy with supercomputers, which are built using a large number of central processing units (CPUs). “By coherently combining billions of low poser laser power amplifiers?similar to the same power of a typical modern household LED?you suddenly have this amazingly capable directed energy system,” he said.

Interstellar probes powered via laser light

Directed energy systems may enable interstellar probes as part of human exploration in the not-too-distant future, and they are at the heart of the NASA Starlight program and the Breakthrough Star shot Initiative to enable humanity’s first interstellar missions. The same core technology has many other applications,such as rapid interplanetary travel for high mass missions, including those carrying people; planetary defense; and the search for extraterrestrial intelligence (SETI).

“Our primary focus currently is on very small robotic spacecraft. They won’t carry humans on board?it’s not the goal for the interstellar portion of our program,” said Lubin. “If humanity wants to explore other worlds outside our solar system, there are no other physically obtainable propulsion options for doing this?with two exceptions.

“One way would be if we could master a technological approach known as anti matter annihilation engines, which are theoretical propulsion systems that generate thrust based on energy liberated by interactions at the level of subatomic particles. But we don’t currently have a way to do that,” Lubin said,”and it involves a number of complexities we do not have a current path to solving.

“The other option is directed energy or photonic propulsion, which is the one we’refocusing on because it appears to be feasible,” Lubin said. In one variant, directed energy propulsion is similar to using the force of water from a garden hose to push a ball forward. Miniscule interstellar spacecraft(typically less than a kilogram and some that are spacecraft on a wafer) can be propelled and steered via laser light, he said.

“Miniaturizing spacecraft isn’t required for all of the mission scenarios we’re considering,but the lower the mass of the spacecraft the faster you can go,” Lubin said. “This system scales in different ways than ordinary mass ejection propulsion.”

So far,all of the rockets that have blasted off from Earth are based on chemical propulsion systems whose basic designs date back to World War II. They are just barely able to make it off the surface of the Earth and into orbit. Making a bigger rocket doesn’t make it go faster, it just allows the rocket to carry more mass. Photonic propulsion works differently, because the less dense the pay load the faster you go. So you want to lower the mass to go faster.

Like driving in a rain storm?in space

One significant challenge for relativistic spacecraft is radiation hardening,because “when we begin to achieve speeds close to the speed of light, the particles in interstellar space, protons in particular, that you plow into?ignore the dust grains for the moment?are the primary radiation source,” said Lubin. “Space isn’t empty; it has roughly one proton and one electron per cubic centimeter, as well as a smattering of helium and other atoms.”

Smashing into those particles can be significant at high speeds because while they maybe traveling slowly within their own frame of reference, for a fast-moving spacecraft they make for high-speed impacts.

“When you hit them it’s like driving in a rainstorm. Even if the rain is coming down straight from the sky your windshield gets plastered because you’re going fast?and it’s quite a serious effect for us,” Lubin said. “We get enormous radiation loads on the leading edge as the front gets just absolutely clobbered, whereas the rest of the spacecraft that is not the forward edge and facing in different directions doesn’t get hit much at all. It’s an interesting and unique problem, and we’re working on what happens when you plow through them.”

In terms of a time frame for putting directed energy propulsion technology to work,”We’re producing laboratory demos of each part of the system,” said Lubin. “Full capability is more than 20 years away, although demonstration missions are feasible within a decade.”

Getting to Mars quickly

The same core photonics technology in the NASA Starlight program also allows for extremely rapid interplanetary missions, including missions to Mars that could transport people in trips as short as one month. This would dramatically reduce the dangers to humans on the long journey to the red planet and is currently being studied as one option.

Trillion Planet Survey

Photonics advances also mean that we can now leave a light on for extraterrestrial intelligence within the universe if we want to be found?in case there is other intelligent life that also wants to know the answer to the question, “are we alone”?

Lubin’s students explore this concept in their “Trillion Planet Survey”experiment. This experiment is now actively searching the nearby galaxy Andromeda, which has about a trillion planets, and other galaxies as well as ours for signals of light.

Combining Lubin’s research with his students’ experiment, there are opportunities for signaling life. When technological advances allow for the demonstration of lasers powerful enough to propel the tiny spacecraft, these lasers could also be used to shine a beacon towards the Andromeda Galaxy in hopes that any life form there could discover and detect that source of the light in their sky.

The reverse case is more interesting. Perhaps another civilization exists with similar capability to what we are now developing in photonics. They may realize, as we do, that photonics is an extremely efficient means of being detected across vast distances far outside our galaxy. If there is an extraterrestrial civilization that is broadcasting their presence via optical beams,like those proposed for photonic propulsion, they are candidates to be detected by a large scale optical survey such as the Lubin team’s Trillion Planet Survey.

“If the transmission wavelength of an extraterrestrial beam is detectable, and has been on long enough, we should be able to detect the signal from a source anywhere within our galaxy or from nearby galaxies with relatively small telescopes on Earth even if neither ‘party’ knows the other exists and doesn’t know ‘where to point,'” Lubin said. This “blind-blind” scenario is key to the “Search for Directed Intelligence” as Lubin calls this strategy.

Planetarydefense

Perhaps one of the most intriguing uses for photonics?closer to home?is to tap it to help defend Earth from external threats such as hits from asteroids and comets.

The same system the researchers are starting to develop for propulsion can be used for planetary defense by focusing the beam onto the asteroid or comet. This causes damage to the surface, and as portions of the surface are ejected during the reaction with the laser light, momentum would push the debris one way and the asteroid or comet in the opposite direction. Thus, little by little, it will deflect the threat, Lubin said.

“The long-term implications for humanity are quite important,” he added.”While most asteroid threats are not existential threats, they can be quite dangerous as we saw in Chelyabinsk, Russia in 2013 and in Tunguska,Russia in 1908. Sadly, the dinosaurs lacked photonics to prevent their demise.Perhaps we will be wiser.”

Providedby: Optical Societyof America

Quantum repeaters on the horizon

Brightest source of entangled photons

Quantum repeaters on the horizon?

Scientists have developed a broadband optical antenna for highly efficient extraction of entangled photons. With a yield of 37% per pulse, it is billed as the brightest source of entangled photons reported so far.

Working at the Leibniz Institute for Solid State and Materials Research Dresden (IFW), and at Leibniz University Hannover (LUH), the scientists note that the rules of quantum physics state that two photons can interact in such away that they become deeply linked and remain connected, even when separated by great distances. Any change in the quantum state of one photon results in a corresponding change in the remote partner. This has great potential for application in future quantum communication, and in particular for secure quantum cryptography. The efficient generation of entangled pairs of photons is an important prerequisite for the implementation of such a technology.

However, the transition of photons over long distances is associated with large losses, so that only 100 km could be realised in fibre optic cablesso far. The better the brightness of the photon source, the better the losses over long distances can be tolerated. The development of bright entangled photon sources is, therefore, an important approach to achieve long-distance quantum communication.

The work at IFW and LUH sets a new record in this respect. A research team headed by Professor Oliver G. Schmidt and Professor Fei Ding has designed a source of entangled photons with unprecedented brightness. The entangled photon pair efficiency of the new device is 37 %. It consists of a broadband optical antenna that emits entangled pairs of photons very efficiently from semiconductor quantum dots. The antenna operates in a broad wavelength range,and is able to emit energetically different photons simultaneously. With regardto other parameters, the new photon source also delivers impressive results: ahigh single-photon purity (99.8%) and a high entanglement fidelity (90%).

?Optimising such a photon source for a variety of properties is a particular challenge to our work,” says Robert Keil, who is currently completing his PhD at the IFW.

?Our entangled photons are generated by the semiconductor material commonly used in opto electronics, gallium arsenide,” adds Professor Ding. Thismakes it possible to produce components based on established semiconductor technologies and which are thus suitable for future industrial production.

?The work represents an important step towards exploring the potential of optical quantum technologies”, emphasises Professor Schmidt, who, with histeam, was able to demonstrate the fastest source of entangled photons three years ago.

The research work of IFW and t LUH is funded by the Federal Ministry of Education and Research (BMBF) as part of the joint project Q.Link.X. This aims at the realisation of the core component for long-range quantum communication, a so-called quantum repeater, within three years. A quantum repeater represents the quantum mechanical counterpart to the classical signal amplifier and could revolutionise optical communication as we know it. .

Largest Ever EMEA Structured Finance Operation For Full Fibre Access

Banks Stump Up ?3.5 billion For Open Fiber FTTH

Largest EverEMEA Structured Finance Operation For Full Fibre Access

Italy’swholesale provider Open Fiber has signed a seven-year ?3.5 billion finance dealto fund the expansion of its FTTH network. The deal, inked with a pool ofcommercial banks, the public sector investment bank Cassa Depositi e Prestitiand the European Investment Bank (EIB), is billed as the largest EMEAstructured finance operation aimed at developing a fully fibre optic accessnetwork.

Theexpansion of Open Fiber’s FTTH network (aka the Open Fiber Industrial Plan) hasbeen costed at some ?6.5 billion. It aims at bringing direct fibre access tosome 19.5 million real estate units, both in urban areas and in less populatedcentres.

?Thefinancial market has shown great interest in the Open Fiber Industrial Plan.The transaction involves the most important Italian and international creditinstitutions,” commented Open Fiber CEO Elisabetta Ripa. ?This is an importantsign of confidence in the project, in the wholesale-only model, and especiallyin the Open Fiber people who have done a fantastic job in recent months ?.

?Thepresence in the pool of lenders of several foreign financial intermediaries ofprimary importance is, implicitly, a sign of confidence in our country,significant in a phase of nervousness of the markets,” stated Franco Bassanini,President of Open Fiber. He added that the operation was also a newdemonstration of the growing attention of the markets for the validity of thebusiness model adopted by Open Fiber and other innovative European companies,which is the most suitable to create, with long-term investments, theinfrastructures required to build the new generation network for the GigabitSociety.

Thepool of commercial banks is made up of BNP Paribas, Soci?t? G?n?rale andUniCredit, as underwriter, Global Coordinator, lobal Bookrunners and Initial Mandatedlead arrangers, Cassa Depositi e Prestiti and the EIB. In addition, amongItalian institutes are Banca IMI, Banco BPM, MPS Capital Services and UBI Bancaand, among international organisations, Credit Agricole, ING, Caixa Bank, MUFGBank, Natwest and Banco Santander, as lenders. Unicredit also acted as agent.

Simultaneouslywith the disbursement of the new loan, expected by October 2018, Open Fiberwill provide for the full repayment of its current debt.

https://openfiber.it/it

UK Plans Full Fibre Future

UK Plans Full Fibre Future

Future Telecoms Infrastructure Review Mandates Optical Broadband For All New Build Homes

Mandatory full fibre broadband for all new build homes and a new priority to connect hard-to-reach rural areas are among key measures proposed in a just released national, long-term strategy for UK telecommunications. The new approach is aimed at driving large-scale commercial investment in the fixed and wireless networks that are vital for the UK to remain globally competitive in a digital world.

The Future Telecoms Infrastructure Review (FTIR), announced as part ofthe UK Government’s modern Industrial Strategy, proposes the changes that are needed to give the majority of the population access to 5G, connect 15 million premises to full fibre broadband by 2025, and provide full fibre broadband coverage across all of the UK by 2033. The publisher of the FTIR, the Department for Digital, Culture, Media & Sport (DCMS), says full fibre infrastructureis vital to underpin 5G coverage.

At the heart of the FTIR is an emphasis on greater consumer choice and initiatives to promote quicker rollout and an eventual full switch over from copper to fibre.

Key recommendations from the FTIR include:

-New legislation that will guarantee full fibre connections to new build developments;

-Providing operators with a ‘right to entry’ to flats, business parks,office blocks and other tenanted properties to allow those who rent to receive fast, reliable connectivity, from the right supplier at the best price;

-Reforms to the regulatory environment for full fibre broadband that will drive investment and competition and is tailored to different local market conditions;

-Public investment in full fibre for rural areas to begin simultaneously with commercial investment in urban locations;

-An industry led switchover (from copper to full fibre) coordinated withr egulator Ofcom;

-Anew nationwide framework which will reduce the costs, time and disruption caused by street-works by standardising the approach across the country;

-Increased access to spectrum for innovative 5G services

-Infrastructure(including pipes and sewers) owned by other utilities such as power, gas and water, should be easy to access, and available for both fixed and mobile use;

-Ofcom to reform regulation, allowing unrestricted access to Openreach ducts and poles for both residential and business use, including essential mobile infrastructure;

-Alongside the FTIR, Government has also published a Digital Infrastructure Toolkit which will allow mobile networks to make far greater use of Government buildings to boost coverage across the UK.

?We want everyone in the UK to benefit from world-class connectivity no matter where they live, work or travel. This radical new blueprint for the future of telecommunications in this country will increase competition and investment in full fibre broadband, create more commercial opportunities and make it easierand cheaper to roll out infrastructure for 5G,” says DCMS Secretary of State,Jeremy Wright. ?The FTIR’s analysis indicates that, without change, full fibre broadband networks will at best only ever reach three quarters of the country,and it would take more than twenty years to do so. It also indicates that 5Goffers the potential for an expansion of the telecoms market, with opportunities for existing players and new entrants.”

Nationwide availability of full fibre is likely to require additional funding of around ?3billion to ?5 billion to support commercial investment in the approximate final10% of areas. The DCMS notes that the UK has only 4% full fibre connections and lags behind many of its key competitors Spain (71%), Portugal (89%) and France(around 28% and increasing quickly).

https://www.gov.uk/government/organisations/department-for-digital-culture-media-sport

Next Generation Lasers

PASSION project: EU Scientists harness photonics to develop faster internet networks

The PASSION team has ambitions to reduce the current power consumption of the internet by ten times their current rates.

EU Scientists are harnessing next generation lasers to create light-speed broadband connections and remove the data bottlenecks that could cause the Internet to grind to a halt as demand increases.

A group of EU-funded researchers are incorporating VCSEL laser sources with silicon photonics to develop long wavelength, high capacity communications for the very first time, paving the way for light-speed metropolitan connectivity, and powering new ?smart” services like future gaming and on-demand TV.

Employed in the Apple iPhone X to scan a user’s face for Face ID,?portrait mode” photos and Animoji, and in its AirPod earbuds to sense your ears, a Vertical Cavity Surface Emitting Laser (VCSEL) is a specialized laserdiode that promises to revolutionize fibre optic communications by improving efficiency and increasing data speed. They are cheap to manufacture and more efficient than traditional laser sources.

Future smart services require a massive overhaul of current internet infrastructure. Data ?bottlenecks” ? or internet ‘traffic jams’ caused by the sheer volume of users with increasingly sophisticated devices running, music,video, gaming, AI, VR and telecommunications ? urgently need to be freed up.

Super fast
These super-fast components have the potential to revolutionise smart services that consume enormous amounts of data for connected citizens of the future.With transmission rates up to 112 Tb/s, sending 28 thousand HD movies would take as little as 1 second.

Whilst VCSELs (favoured for their rapid data transmission and low power consumption) have been used in data communications for short-distance connections in intra-data centres, using these infrared lasers for long wavelength, and high capacity communications has never been done before to connect our cities.

Calling themselves PASSION, the research group is keen to exploit VCSEL light sources due to their high transmission efficiency and minimal power consumption.

Project coordinator Professor Pierpaolo Boffi commented, ?VCSELs are a bit of a buzzword at the moment. They have the advantages of low driving current, highlight-power conversion efficiency and high directivity. This makes them an ideal choice for transmitting huge amounts of data in a low cost, energy efficient way.”

?VCSELs will help us target the site of the ‘bottlenecks’: the Metropolitan AreaNetworks (MANs) interlinking users within a geographical area where all the internet traffic from a local area flows, and cope with the exponential growth in users and increasingly sophisticated services like gaming, assisted living and on-demand TV.”

The PASSION team has ambitions to reduce the current power consumption of the internet by ten times their current rates.

?Our researchers are developing a flexible network architecture that will be optimized for metropolitan applications based on aggregated signal flows. Atenfold reduction in power consumption will be achieved by exploiting the full wavelength spectrum and the space dimension in a multi-core fibre,” Boffi added.

Light-speed networks
US internet technology giant Cisco predicts that internet traffic will grow to an unprecedented 3.3 trillion gigabytes (3.3 zettabytes) per year between 2016and 2021.

Inas little as 3 years from now internet usage is expected to reach 3 trillion internet video minutes per month, according to the Cisco report. To put this usage into perspective, this is five million years of video per month, or one million video minutes every second.

With the exponential growth rate of users, and the enormous amount of data being sent and received through complex devices, such as gaming, TV and telecoms, the internet as we know it, so project coordinator Professor Pierpaolo Boffi believes, will grind to a halt if nothing is done.

Boffi said, ?If we are serious about having super-connected citizens, using broadband services such as telework, improved entertainment such as HD and 3D TV on demand, or gaming, remote healthcare, assisted living, enhanced social networking, ‘eLearning’ for example, we need a fibre optic network that is leagues ahead of where it is now. We need a lighter and more flexible internet with low energy consumption. Otherwise, the future internet costs will be unsustainable.”

In order to support a low energy, sustainable communications infrastructure with new photonics technologies, the PASSION group came together to tackle the incoming capacity limitations in optical fibre networks in our cities.

?Fibreoptic networks for the effective transmission and routing of a huge amount ofdata in our cities have undergone frequent development in the last ten years.However we are now in a situation where bottlenecks in the transmission and the routing of data are becoming inevitable,” Boffi said.

?PASSION will come up with new transmission, detection, and routing solutions as well asan advanced network architecture based on innovative laser sources. These solutions ensure a transmission rate of more than 100 Tb/s per link and as witching capacity of over 1 Pb/s per node.”

VCSEL silicon photonics
Developing a new technological platform for their network components, the PASSION group will incorporate VCSELs, or Vertical-Cavity Surface-EmittingLaser Sources, to silicon photonics for the further reduction of the packaging costs of such a technology platform.

VCSELs,the key components in 3D sensing, are currently used in popular electronicsplatforms, for example, in range finders for smart phone cameras such as FaceID and Animoji.

However,deploying such a technology in silicon photonics for high speed internetconnections for the metropolitan area is a real challenge. PASSION projectmanager Paola Parolari, explains:

?VCSELs could be the next big leap in metro communications. They are already employed widely in data communications, in intra-data centre short-distance connections for example. However exploiting VCSELs, emitting at long wavelengths and integrated in silicon photonics to realize multi-channel modules with very high communication capacity can have tremendous impacts on the fibre networks of our cities in terms of cost, footprint and energy saving”.

Coordinated by the Politecnico di Milano the PASSION consortium secured a grant of?7,535,747 from the European Commission under the H2020 funding program and was funded under the Photonics Public Private Partnership.

PASSION comprises 14 partners with participants from 7 different European countries:(Italy) Politecnico di Milano and SM Optics; (Spain) CTTC, Telefonica and VLCPhotonics; (The Netherlands) Technische Universiteit Eindhoven and EffectPhotonics; (Finland) VTT; (Germany) Vertilas; (Israel) OpSys Technologies;(France) EPIC; and from 2 extra-Europe countries: (Japan) NICT and (SouthKorea) ETRI and ChemOptics.

X